Tensor Products of p-adic Vector Measures

A. K. Katsaras and C. G. Petalas

Key words and phrases: Non-Archimedean fields, zero-dimensional spaces, p-adic measures, locally convex spaces, tensor products.

2000 Mathematics Subject Classification: 46S10

Abstract

Tensor products of p-adic vector measures are introduced and some of their properties are investigated. It is shown that a Fubini's Theorem holds for tensor products of τ -additive vector measures.

1 Preliminaries

Throughout this paper, \mathbb{K} will be a complete non-Archimedean valued field, whose valuation is non-trivial. By a seminorm, on a vector space over \mathbb{K} , we will mean a non-Archimedean seminorm. Similarly, by a locally convex space we will mean a non-Archimedean locally convex space over \mathbb{K} (see [14] or [15]). For E a locally convex space, we will denote by cs(E) the collection of all continuous seminorms on E. If E is Hausdorff, \hat{E} denotes the completion of E. If E is another locally convex space, then, for $p \in cs(E)$ and $q \in cs(F)$, $p \otimes q$ denotes the tensor product of the seminorms p,q. On the tensor product $E \otimes F$ we will consider the projective topology, which coincides with the topology generated by the seminorms $p \otimes q$, $p \in cs(E)$ and $p \in cs(E)$. For a zero-dimensional Hausdorff space $p \in cs(E)$ are the subspaces of all $p \in cs(E)$ and $p \in cs(E)$ whose range is bounded or relatively compact in $p \in cs(E)$. In case $p \in cs(E)$ whose range is bounded or relatively compact in $p \in cs(E)$. For $p \in cs(E)$ and $p \in cs(E)$ whose range is bounded or relatively compact in $p \in cs(E)$. For $p \in cs(E)$ and $p \in cs(E)$ we write simply $p \in cs(E)$ and $p \in cs(E)$ and $p \in cs(E)$ are the subspaces of all $p \in cs(E)$ whose range is bounded or relatively compact in $p \in cs(E)$. For $p \in cs(E)$ and $p \in cs(E)$ and $p \in cs(E)$ whose range is bounded or relatively compact in $p \in cs(E)$. For $p \in cs(E)$ and $p \in cs(E)$ are the subspaces of all $p \in cs(E)$ whose range is bounded or relatively compact in $p \in cs(E)$ and $p \in cs(E)$ are the subspaces of all $p \in cs(E)$ and $p \in cs(E)$ and $p \in cs(E)$ are the subspaces of all $p \in cs(E)$ and $p \in cs(E)$ and $p \in cs(E)$ are the subspaces of all $p \in cs(E)$ and $p \in cs(E)$ and $p \in cs(E)$ are the subspaces of $p \in cs(E)$ and $p \in cs(E)$ and $p \in cs(E)$ ar

$$||f||_A = \sup\{|f(x)| : x \in A\} \text{ and } ||f|| = ||f||_X.$$

For $A \subset X$, A^c will be its complement in X and χ_A the \mathbb{K} -valued characteristic function of A. Next we will recall the definition of the topologies β and β_o on $C_b(X)$ (see [5] and [6]). Let $\Omega = \Omega(X)$ be the family of all compact subsets of $\beta_o X$ which are disjoint from X. For $Z \in \Omega$, let C_Z be the set of all $h \in C_{rc}(X)$ for which the continuous extension h^{β_o} to all of $\beta_o X$ vanishes on Z. We denote by β_Z the locally convex topology on $C_b(X)$ generated by the seminorms p_h , $h \in C_Z$,

 $p_h(f) = \|hf\|$. The inductive limit of the topologies β_Z , $Z \in \Omega$, is the topology β (see [5]). As it is shown in [8], Theorem 2.2, an absolutely convex subset W of $C_b(X)$ is a β_Z neighborhood of zero iff, for each r > 0, there exist a clopen (i.e. both closed and open) subset A of X, whose closure in $\beta_o(X)$ is disjoint from Z, and $\epsilon > 0$ such that

$$\{f \in C_b(X) : ||f||_A \le \epsilon, ||f|| \le r\} \subset W.$$

The strict topology β_o (see [5]) is defined by the seminorms $f \mapsto \|\phi f\|$, where ϕ ranges over the family $B_{ou}(X)$ of all $\phi \in \mathbb{K}^X$ which are bounded and vanish at infinity. As it is shown in [11], Theorem 4.18, the topologies β and β_o on $C_b(X)$ coincide.

Assume next that X is a non-empty set and \mathcal{R} a separating algebra of subsets of X, i.e. \mathcal{R} is a family of subsets of X such that

- 1. $X \in \mathcal{R}$, and, if $A, B \in \mathcal{R}$, then $A \cup B$, $A \cap B$, A^c are also in \mathcal{R} .
- 2. If x, y are distinct elements of X, then there exists a member of \mathcal{R} which contains x but not y.

Then \mathcal{R} is a base for a Hausdorff zero-dimensional topology $\tau_{\mathcal{R}}$ on X. For E a locally convex space, we denote by $M(\mathcal{R}, E)$ the space of all finitely-additive measures $m: \mathcal{R} \to E$ such that $m(\mathcal{R})$ is a bounded subset of E (see [11]). For a net (V_{δ}) of subsets of X, we write $V_{\delta} \downarrow \emptyset$ if (V_{δ}) is decreasing and $\cap V_{\delta} = \emptyset$. An element m of $M(\mathcal{R}, E)$ is said to be τ -additive if $m(V_{\delta}) \to 0$ for each net (V_{δ}) in \mathcal{R} with $V_{\delta} \downarrow \emptyset$. We will denote by $M_{\tau}(\mathcal{R}, E)$ the space of all τ -additive members of $M(\mathcal{R}, E)$. For $m \in M(\mathcal{R}, E)$ and $p \in cs(E)$, we define

$$m_p: \mathcal{R} \to \mathbb{R}, \quad m_p(A) = \sup\{p(m(V)): V \in \mathcal{R}, V \subset A\} \quad \text{and} \quad \|m\|_{p|} = m_p(X).$$

We also define

$$N_{m,p}: X \to \mathbb{R}, \quad N_{m,p}(x) = \inf\{m_p(V): x \in V \in \mathcal{R}\}.$$

Next we will recall the definition of the integral of an $f \in \mathbb{K}^X$ with respect to some $m \in M(\mathcal{R}, E)$. Assume that E is a complete Hausdorff locally convex space. For $A \subset X$, let \mathcal{D}_A be the family of all $\alpha = \{A_1, A_2, \ldots, A_n; x_1, x_2, \ldots, x_n\}$, where $\{A_1, A_2, \ldots, A_n\}$ is an \mathcal{R} -partition of A and $x_k \in A_k$. We make \mathcal{D}_A into a directed set by defining $\alpha_1 \geq \alpha_2$ if the partition of A in α_1 is a refinement of the one in α_2 . For $\alpha = \{A_1, A_2, \ldots, A_n; x_1, x_2, \ldots, x_n\}$, we define $\omega_{\alpha}(f, m) = \sum_{k=1}^n f(x_k) m(A_k)$. If the limit $\lim \omega_{\alpha}(f, m)$ exists in E, we will say that f is m-integrable over A and denote this limit by $\int_A f \, dm$ (see [11]). For A = X, we write simply $\int f \, dm$. It is easy to see that if f is m-integrable over X, then it is m-integrable over every $A \in \mathcal{R}$ and $\int_A f \, dm = \int \chi_A f \, dm$. If f is bounded on A, then

$$p\left(\int_A f \, dm\right) \le \|f\|_A \cdot m_p(A).$$

Assume next hat m is τ -additive and let $S(\mathcal{R})$ be the space of all \mathbb{K} -valued \mathcal{R} -simple functions. Let G_m be the space of all $f \in \mathbb{K}^X$ for which

$$||f||_{N_{m,p}} = \sup_{x \in X} |f(x)| \cdot N_{m,p}(x) < \infty$$

for all $p \in cs(E)$. We consider on G_m the locally convex topology generated by the seminorms $\|.\|_{N_{m,p}}$, $p \in cs(E)$. The map

$$\omega: S(\mathcal{R})
ightarrow E, \quad \omega(g) = \int g \ dm$$

is continuous and so it has a continuous extension $\bar{\omega}: \overline{S(\mathcal{R})} \to E$. We will say that f is (VR)-integrable with respect to m iff $f \in \overline{S(\mathcal{R})} = L_m$. In this case we will denote $\bar{\omega}(f)$ by $(VR) \int f \, dm$ (see [11]). As it is shown in [11], the space L_m , with the induced topology, is complete. In the same paper it is proved that, if $f \in \mathbb{K}^X$ is m-integrable, then it is also (VR)-integrable and

$$(VR)\int f\,dm=\int f\,dm.$$

2 Tensor Products of Measures

Let \mathcal{R}_1 , \mathcal{R}_2 be separating algebras of subsets of the sets X, Y, respectively, and let \mathcal{R} be the algebra of subsets of $X \times Y$ which is generated by the family

$$\mathcal{R}_1 \times \mathcal{R}_2 = \{ A \times B : A \in \mathcal{R}_1, B \in \mathcal{R}_2 \}.$$

Lemma 2.1 If \mathcal{R} , \mathcal{R}_1 , and \mathcal{R}_2 are as above, then :

- 1. A subset G of $X \times Y$ is in \mathcal{R} iff it is a finite union of members of $\mathcal{R}_1 \times \mathcal{R}_2$.
- 2. Every member of \mathcal{R} is a finite union of pairwise disjoint members of $\mathcal{R}_1 \times \mathcal{R}_2$.

Proof: (1). Let Φ be the family of all finite unions of members of $\mathcal{R}_1 \times \mathcal{R}_2$. It is clear that Φ contains $X \times Y$ and that it is closed under finite intersections and finite unions. Also, since $(A \times B)^c = [A^c \times Y] \bigcup [A \times B^c]$, it follows easily that Φ is closed under complimentation. It is clear now that $\Phi = \mathcal{R}$.

(2). Let $G = \bigcup_{k=1}^{n} A_k \times B_k$, where $A_k \in \mathcal{R}_1$, $B_k \in \mathcal{R}_1$. We will show by induction on n that G is a finite union of pairwise disjoint members of $R_1 \times \mathcal{R}_2$. Suppose that it is true when n = k and let n = k + 1. By our induction hypothesis, there are pairwise disjoint members $D_i \times F_i$ of $R_1 \times \mathcal{R}_2$. $i = 1, \ldots, N$, such that

$$\bigcup_{i=1}^{N} D_i \times F_i = \bigcup_{i=1}^{k} A_i \times B_i.$$

Let

$$\Phi_i = \{D_i^c \times Y, D_i \times F_i^c\} \text{ for } i = 1, \dots, N,$$

and let \mathcal{F} be the family of all subsets of $X \times Y$ of the form $\bigcap_{i=1}^{N} V_i$, where $V_i \in \Phi_i$. Clearly $\bigcup \mathcal{F} = \left(\bigcup_{i=1}^{k} A_i \times B_i\right)^c$ and the members of \mathcal{F} are pairwise disjoint. Now

$$\bigcup_{i=1}^{k+1} A_i \times B_1 = \left[\bigcup_{i=1}^{N} D_i \times F_i \right] \bigcup \left\{ D \cap (A_{k+1} \times B_{k+1}) : D \in \mathcal{F} \right\}.$$

This clearly shows that $\bigcup_{1}^{k+1} A_i \times B_i$ can be written as a finite union of pairwise disjoint members of $R_1 \times R_2$ and the Lemma follows.

Lemma 2.2 $\tau_{\mathcal{R}} = \tau_{\mathcal{R}_1} \times \tau_{\mathcal{R}_2}$.

Proof: Since $\tau_o = \tau_{\mathcal{R}_1} \times \tau_{\mathcal{R}_2}$ is zero dimensional and $\mathcal{R}_1 \times \mathcal{R}_2 \subset \tau_o$, it follows that $\tau_{\mathcal{R}} \subset \tau_o$. On the other hand, let $(x,y) \in G \in \tau_o$. There are $A \in \mathcal{R}_1$, $B \in \mathcal{R}_2$ with $(x,y) \in A \times B \subset G$. Since $A \times B \in \mathcal{R}$, it follows that \mathcal{R} is a base for τ_o and so $\tau_o = \tau_{\mathcal{R}}$.

Lemma 2.3 Let E, F be Hausdorff locally convex spaces and $m_1 \in M(\mathcal{R}_1, E)$, $m_2 \in M(\mathcal{R}_2, F)$. If $\{A, A_1, \ldots, A_n\} \subset \mathcal{R}_1$ and $\{B, B_1, \ldots, B_n\} \subset \mathcal{R}_2$ are such that the sets $A_k \times B_k$, $k = 1, \ldots, n$, are pairwise disjoint and their union is $A \times B$, then

$$m_1(A) \otimes m_2(B) = \sum_{k=1}^n m_1(A_k) \otimes m_2(B_k).$$

Proof: We will prove it by induction on n. Suppose that it holds for n = k and let n = k + 1. If one of the $A_i \times B$ is empty, we are done. Assume that none of them is empty. Then $A \cap A_i = A_i$ and $B \cap B_i = B_i$. Now

$$\bigcup_{i=1}^{k} A_i \times B_i = (A \times B) \bigcap [(A_{k+1} \times B_{k+1})^c]$$
$$= (A \times B) \bigcap [(A_{k+1}^c \times Y) \bigcup (A_{k+1} \times B_{k+1}^c)].$$

Also

$$(A \cap A_{k+1}^c) \times B = \left[(A \cap A_{k+1}^c) \times B \right] \cap \left[\bigcup_{i=1}^k A_i \times B_i \right]$$
$$= \bigcup_{i=1}^k \left(A_i \cap A_{k+1}^c \right) \times B_i$$

and

$$A_{k+1} \times (B \cap B_{k+1}^c) = \{A_{k+1} \times (B \cap B_{k+1}^c)\} \cap \left\{ \bigcup_{i=1}^k A_i \times B_i \right\}$$
$$= \bigcup_{i=1}^k (A_i \cap A_{k+1}) \times (B_i \cap B_{k+1}^c).$$

By our induction hypothesis, we have

$$m_1(A \cap A_{k+1}^c) \otimes m_2(B) = \sum_{i=1}^k m_1(A_i \cap A_{k+1}) \otimes m_2(B_i)$$

and

$$m_1(A_{k+1}) \otimes m_2(B \cap B_{k+1}^c) = \sum_{i=1}^k m_1(A_i \cap A_{k+1}) \otimes m_2(B_i \cap B_{k+1}^c).$$

Moreover, for $i \leq k$,

$$m_1(A_i) \otimes m_2(B_i) = m_1(A_i \cap A_{k+1}) \otimes m_2(B_i) + m_1(A_i \cap A_{k+1}^c) \otimes m_2(B_i)$$

= $m_1(A_i \cap A_{k+1}) \otimes m_2(B_i \cap B_{k+1})$
+ $m_1(A_i \cap A_{k+1}) \otimes m_2(B_i \cap B_{k+1}^c) + m_1(A_i \cap A_{k+1}^c) \otimes m_2(B_i).$

Since one of the two sets $A_i \cap A_{k+1}$, $B_i \cap B_{k+1}$ must be empty, we have that

$$m_1(A_i) \otimes m_2B_i = m_1(A_i \cap A_{k+1}) \otimes m_2(B_i \cap B_{k+1}^c) + m_1(A_i \cap A_{k+1}^c) \otimes m_2(B_i).$$

Thus

$$m_1(A) \otimes m_2(B) = m_1(A \cap A_{k+1}^c) \otimes m_2(B) + m_1(A_{k+1}) \otimes m_2(B)$$

$$= m_1(A \cap A_{k+1}^c) \otimes m_2(B) + m_1(A_{k+1}) \otimes m_2(B \cap B_{k+1}^c)$$

$$+ m_1(A_{k+1}) \otimes m_2(B_{k+1})$$

$$= \sum_{i=1}^k m_1(A_i) \otimes m_2(B_i) + m_1(A_{k+1}) \otimes m_2(B_{k+1}).$$

This clearly completes the proof.

Lemma 2.4 Let \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R} , m_1 , m_2 be as in the preceding Lemma. If A_k , $F_i \in \mathcal{R}_1$, B_k , $G_i \in \mathcal{R}_2$, $k = 1, \ldots, n$, $i = 1, \ldots, N$, are such that $\bigcup_{k=1}^n A_k \otimes B_k = \bigcup_{i=1}^N F_i \otimes G_i$ and each of the families $\{A_k \times B_k : k = 1, \ldots, n\}$ and $\{F_i \times G_i : i = 1, \ldots, N\}$ consists of sets which are pairwise disjoint, then

$$\sum_{k=1}^{n} m_1(A_k) \otimes m_2(B_k) = \sum_{i=1}^{N} m_1(F_i) \otimes m_2(G_i).$$

Proof:

$$A_k \times B_k = \bigcup_{i=1}^N (F_i \cap A_k) \times (G_i \cap B_k)$$
 and $F_i \times G_i = \bigcup_{k=1}^n (F_i \cap A_k) \times (G_i \cap B_k)$.

Now the result follows by applying the preceding Lemma.

Theorem 2.5 If \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R} , m_1 , m_2 are as in the preceding Lemma, then there exists a unique $m \in M(\mathcal{R}, E \otimes F)$ with $m(A \times B) = m_1(A) \otimes m_2(B)$, when $A \in \mathcal{R}_1$ and $B \in \mathcal{R}_2$.

Proof: For $G \in \mathcal{R}$, there are $A_i \in \mathcal{R}_1$, $B_i \in \mathcal{R}_2$, i = 1, ..., n, such that $G = \bigcup_{i=1}^n A_i \times B_i$ and the sets $A_i \times B_i$ are pairwise disjoint. Define $m(G) = \sum_{i=1}^n m_1(A_i \otimes m_2(B_i))$. In view of the preceding Lemma, m is well defined and finitely additive. Also $m(\mathcal{R})$ is a bounded subset of $E \otimes F$ and so $m \in M(\mathcal{R}, E \otimes F)$. Clearly m is the unique $\mu \in M(\mathcal{R}, E \otimes F)$ such that $\mu(A \times B) = m_1(A) \otimes m_2(B)$ when $A \in \mathcal{R}_1$ and $B \in \mathcal{R}_2$.

We will call $m_1 \otimes m_2$ the tensor product of m_1, m_2 .

Theorem 2.6 Let $m_1 \in M(\mathcal{R}_1, E)$, $m_2 \in M(\mathcal{R}_2)$, F), $m = m_1 \otimes m_2$, $p \in cs(E)$ and $q \in cs(F)$. Then, for $V_1 \in \mathcal{R}_1$, $V_2 \in \mathcal{R}_2$, we have

$$m_{p\otimes q}(V_1\times V_2)=(m_1)_p(V_1)\cdot (m_2)_q(V_2).$$

Moreover, for $x \in X$, $y \in Y$, we have

$$N_{m,p\otimes q}(x,y) = N_{m_1,p}(x) \cdot N_{m_2,q}(y).$$

Proof: Let $d = (m_1)_p(V_1) \cdot (m_2)_q(V_2)$. It is clear that $d \leq m_{p \otimes q}(V_1 \times V_2)$. On the other hand, let $G \in \mathcal{R}$, $G \subset V_1 \times V_2$. There are pairwise disjoint $A_i \times B_i$ in $\mathcal{R}_1 \times \mathcal{R}_2$ such that $G = \bigcup_{i=1}^n A_i \times B_i$, $A_i \subset V_1$, $B_i \subset V_2$. Then

$$p \otimes q(m(G)) = p \otimes q \left(\sum_{i=1}^{n} m_1(A_i) \otimes m_2(B_i) \right)$$

$$\leq (m_1)_p(V_1) \cdot (m_2)_q(V_2).$$

Thus $m_{p\otimes q}(V_1\times V_2)\leq d$ and so $d=m_{p\otimes q}(V_1\times V_2)$. Given $\epsilon>0$, there exist $A\in\mathcal{R}_1$ containing x and $B\in\mathcal{R}_2$ containing y such that

$$(m_1)_n(A) < N_{m_1,n}(x) + \epsilon, \quad (m_2)_n(B) < N_{m_2,n}(y) + \epsilon.$$

Thus

$$N_{m,p\otimes q}(x,y) \le m_{p\otimes q}(A \times B) = (m_1)_p(A) \cdot (m_2)_q(B)$$

 $< [N_{m_1,p}(x) + \epsilon] \cdot [N_{m_2,q}(y) + \epsilon].$

Taking $\epsilon \to 0$, we get that

$$N_{m,p\otimes q}(x,y) \leq N_{m_1,p}(x) \cdot N_{m_2,q}(y).$$

On the other hand, let $N_{m,p\otimes q}(x,y) < \theta$. There exists $G \in \mathcal{R}$ containing (x,y) such that $m_{p\otimes q}(G) < \theta$. By Lemma 2.1, there exist $A \in \mathcal{R}_1$ containing x and $B \in \mathcal{R}_2$ containing y such that $A \times B \subset G$. Now

$$N_{m_1,p}(x) \cdot N_{m_2,q}(y) \le (m_1)_p(A) \cdot (m_2)_q(B) = m_{p \otimes q}(A \times B) \le m_{p \otimes q}(G) < \theta.$$

It is clear now that

$$N_{m,p\otimes q}(x,y) \ge N_{m_1,p}(x) \cdot N_{m_2,q}(y)$$

and the result follows.

Throughout the rest of the paper, E, F will be complete Hausdorff locally convex spaces, X, Y non-empty sets, \mathcal{R}_1 , \mathcal{R}_2 separating algebras of subsets of X, Y, respectively, and \mathcal{R} the algebra of subsets of $X \times Y$ generated by $\mathcal{R}_1 \times \mathcal{R}_2$.

For $f \in \mathbb{K}^X$, $g \in \mathbb{K}^Y$, we will denote by $f \odot g$ the function which is defined on $X \times Y$ by $f \odot g(x,y) = f(x)g(y)$.

Theorem 2.7 Let $m_1 \in M(\mathcal{R}_1, E)$, $m_2 \in M(\mathcal{R}_2, F)$ and $m = m_1 \otimes m_2$. If $f \in \mathbb{K}^X$ is m_1 -integrable and $g \in \mathbb{K}^Y$ is m_2 -integrable, then $f \odot g$ is m-integrable and

$$\int f\odot g\,dm = \left[\int f\,dm_1\right]\otimes \left[\int g\,dm_2\right].$$

Proof: Let $p \in cs(E)$, $q \in cs(F)$ and $\epsilon > 0$. By [11, Theorem 4.2], there are $A \in \mathcal{R}_1$, $B \in \mathcal{R}_2$ such that $(m_1)_p(A^c) = (m_2)_q(B^c) = 0$ and f, g are bounded on A, B, respectively. Let $d > \max\{\|f\|_A, \|g\|_B\}$ and choose $0 < \epsilon_1 < \min\{1, \epsilon\}$ such that $d\epsilon_1 \cdot \max\{\|m_1\|_p, \|m_2\|_q\} \le \epsilon$. By [11, Theorem 4.1], there exist an \mathcal{R}_1 -partition $\{A_1, \ldots, A_n\}$ of X, which is a refinement of $\{A, A^c\}$, and an \mathcal{R}_2 -partition $\{B_1, \ldots, B_N\}$ of Y, which is a refinement of $\{B, B^c\}$, such that $|f(x_1) - f(x_2)| < (m_1)_p(A_i) < \epsilon_1$, if x_1, x_2 are in A_i , and $|g(y_1) - g(y_2)| \cdot (m_2)_q(B_j) < \epsilon_1$, if y_1, y_2 are in B_j . Choose $x_i \in A_i, y_j \in B_j$. Then, by [11, Theorem 4.1], we have

$$p\left(\int f\,dm_1 - \sum_{i=1}^n f(x_i)m_1(A_i)\right) \le \epsilon_1$$

and

$$q\left(\int g\,dm_2 - \sum_{j=1}^N g(y_j)m_2(B_j)\right) \le \epsilon_1$$

We may assume that $\bigcup_{i=1}^k A_i = A$ and $\bigcup_{j=1}^r B_j = B$. Let $1 \le i \le n$, $1 \le j \le N$ and let $(z_1, z_2) \in A_i \times B_j$. If either i > k or j > r, then $m_{p \otimes q}(A_i \times B_j) = 0$. Suppose that $i \le k$ and $j \le r$. Then

 $|f(x_i)g(y_j) - f(z_1)g(z_2)| \cdot m_{p \otimes q}(A_i \times B_j)$

 $\leq d \cdot \max \{ |f(x_i - f(z_1)| \cdot (m_1)_p(A_i) \cdot) (m_2)_q(Y), |g(y_j) - g(z_2)| \cdot (m_2)_q(B_j) \cdot (m_1)_p(X) \}$ $\leq d \epsilon_1 \cdot \max \{ ||m_1||_p, ||(m_2)||_q \} = \epsilon_2 \leq \epsilon.$

This, in view of [11, Theorem 4.1], implies that, if we consider m as a member of $M(\mathcal{R}, E \hat{\otimes} F)$, then $h = f \otimes g$ is m-integrable and

$$p \otimes q \left(\int f dm - \sum_{i,j} f(x_i)g(y_j)m_1(A_i)m_2(B_j) \right) \leq \epsilon_2.$$

Let

$$u_1 = \int f dm_1 - \sum_{i=1}^k f(x_i)m_1(A_i), \quad u_2 = \int g dm_2 - \sum_{j=1}^r g(y_j)m_2(B_j).$$

and

$$u = \int h \, dm - \sum_{i=1}^{k} \sum_{j=1}^{r} f(x_i) g(y_j) \cdot m_1(A_i) m_2(B_j).$$

Then

$$-\int h dm + \left(\int f dm_1\right) \otimes \left(\int g dm_2\right) =$$

 $= -u + u_1 \otimes u_2 + u_1 \otimes \left(\sum_{j=1}^r g(y_j) m_2(B_j)\right) + \left[\sum_{i=1}^k f(x_i) m_1(A_i)\right] \otimes u_2.$ But $p \otimes q(u_1 \otimes u_2) \leq \epsilon_1^2 \leq \epsilon$ and $p \otimes q(u) \leq \epsilon$. Also

$$p \otimes q \left(u_1 \otimes \left(\sum_{j=1}^r g(y_j) m_2(B_j) \right) \right) \leq \epsilon_1 d \cdot ||m_2||_q \leq \epsilon_1 d \cdot ||m_$$

and

$$p \otimes q \left(\left[\sum_{i=1}^{k} f(x_i) m_1(A_i) \right] \otimes u_2 \right) \leq \epsilon.$$

Thus

$$p \otimes q \left(\int h \, dm - \left[\int f \, dm_1 \right] \otimes \left[\int g \, dm_2 \right] \right) \leq \epsilon.$$

Since $\epsilon > 0$ was arbitrary and E, F are Hausdorff, it follows that

$$\int h \, dm = \left(\int f \, dm_1 \right) \otimes \left(\int g \, dm_2 \right)$$

which completes the proof.

3 The Case of τ -Additive Measures

Theorem 3.1 If $m_1 \in M_{\tau}(\mathcal{R}_1, E)$ and $m_2 \in M_{\tau}(\mathcal{R}_2, F)$, then

$$m = m_1 \otimes m_2 \in M_{\tau}(\mathcal{R}, E \hat{\otimes} F).$$

Proof: Consider on X, Y the zero-dimensional topologies $\tau_{\mathcal{R}_1}$, $\tau_{\mathcal{R}_2}$, respectively and on $X \times Y$ the product topology which coincides with $\tau_{\mathcal{R}}$. By [10, Theorem 10.4], there exists a linear homeomorphism

$$\omega: (C_b(X), \beta_o) \otimes (C_b(Y), \beta_o) \longrightarrow (C_b(X \times Y, \beta_o))$$

onto a dense subspace M of $C_b(X \times Y)$, where $\omega(f \otimes g) = f \odot g$, for $f \in C_b(X)$, $g \in C_b(Y)$. The map $f \mapsto \int f \, dm_1$, from $C_b(X)$ to E, is β_o -continuous by [11, Theorem 4.13]. The same is true for the map $g \mapsto \int g \, dm_2$, from $C_b(Y)$ to F. Given $p \in cs(E)$ and $q \in cs(F)$, there are $\phi_1 \in B_{ou}(X)$, $\phi_2 \in B_{ou}(Y)$ such that

$$p\left(\int f dm_1\right) \le \|\phi_1 f\|, \quad q\left(\int g dm_2\right) \le \|\phi_2 g\|$$

for all $f \in C_b(X)$, $g \in C_b(Y)$. The bilinear map

$$T: (C_b(X), \beta_o) \times (C_b(Y), \beta_o) \to E \hat{\otimes} F, \quad T(f, g) = \left(\int f \, dm_1\right) \otimes \left(\int g \, dm_2\right)$$

is continuous and so the induced linear map

$$\psi: G = (C_b(X), \beta_o) \otimes (C_b(Y), \beta_o) \longrightarrow E \hat{\otimes} F$$

is continuous. Let

$$v = \psi \circ \omega^{-1} : M \longrightarrow E \hat{\otimes} F.$$

Since M is β_o -dense in $C_b(X \times Y)$, there exists a continuous linear extension

$$\bar{v}: (C_b(X \times Y), \beta_o) \longrightarrow E \hat{\otimes} F.$$

In view of [11, Theorem 4.13], there exists a unique $\mu \in M_{\tau}(\mathcal{R}, E \hat{\otimes} F)$ such that $\bar{v}(h) = \int h \, d\mu$ for all $h \in C_b(X \times Y)$. For $A \in \mathcal{R}_1$, $B \in \mathcal{R}_2$, taking as h the characteristic function of $A \times B$, we get that

$$\mu(A \times B) = \left(\int \chi_A \, dm_1 \right) \otimes \left(\int \chi_B \, dm_2 \right) = m_1(A) m_2(B).$$

Thus $\mu(\mathcal{R}) \subset E \otimes F$) and $\mu = m$ by Theorem 2.5.

For R_o a separating algebra of subsets of a set Z, G a complete Hausdorff locally convex space and $u \in M_\tau(\mathcal{R}_o, G)$, we denote by L_μ the space of all $f \in \mathbb{K}^Z$ which are (VR)-integrable with respect to μ . On L_μ we consider the locally convex topology generated by the seminorms $N_{\mu,p}$, $p \in cs(G)$.

Theorem 3.2 Let $m_1 \in M_{\tau}(\mathcal{R}_1, E)$, $m_2 \in M_{\tau}(\mathcal{R}_2, F)$ and $m = m_1 \otimes m_2$. Then the projective tensor product $L_{m_1} \otimes L_{m_2}$ is topologically isomorphic to a dense subspace of L_m .

Proof: Consider the bilinear map

$$T: L_{m_1} \times L_{m_2} \longrightarrow L_m, \quad T(f, q) = f \odot q.$$

Let $p \in cs(E)$, $q \in cs(F)$, $f \in L_{m_1}$, $g \in L_{m_2}$ and $h = f \odot g$. Applying Theorem 2.6, we get that

$$||h||_{N_{m,p\otimes q}} = ||f||_{N_{m_1,p}} \cdot ||g||_{N_{m_2,q}}$$

and so T is continuous. Consequently the induced linear mat

$$\psi: L_{m_1} \otimes L_{m_2} \longrightarrow L_m$$

is continuous. The map ψ is one-to-one. In fact, assume that $\sum_{k=1}^n f_k \odot g_k = 0$, where $f_k \in L_{m_1}, g_k \in L_{m_2}$. We will show, by induction on n, that $\sum_{k=1}^n f_k \otimes g_k = 0$. This is clearly true if n=1 or if each f_k is zero. Suppose that it is true for n-1 and that, say, $f_n \neq 0$. Then g_n is a linear combination of g_1, \ldots, g_{n-1} , i.e. $g_n = \sum_{k=1}^{n-1} \lambda_k g_k, \lambda_k \in \mathbb{K}$. Thus

$$0 = \sum_{k=1}^{n} f_k \odot g_k = \sum_{k=1}^{n-1} f_k \odot g_k + \sum_{k=1}^{n-1} \lambda_k (f_n \odot g_k) = \sum_{k=1}^{n-1} (f_k + \lambda_k f_n) \odot g_k.$$

By our induction hypothesis, we have

$$0 = \sum_{k=1}^{n-1} (f_k + \lambda_k f_n) \otimes g_k = \sum_{k=1}^{n-1} f_k \otimes g_k + f_n \otimes \left(\sum_{k=1}^{n-1} \lambda_k g_k\right) = \sum_{k=1}^n f_k \otimes g_k,$$

which shows that ψ is one-to-one.

Claim For $q_m = \|\cdot\|_{N_{m,p\otimes q}}, q_{m_1} = \|\cdot\|_{N_{m_1,p}}, q_{m_2} = \|\cdot\|_{N_{m_2,q}},$ we have

$$q_m(\psi(h)) = (q_{m_1} \otimes q_{m_2})(h).$$

Indeed, if $h = \sum_{k=1}^{n} f_k \otimes g_k$, then

$$q_m(\psi(h)) = q_m \left(\sum_{k=1}^n \psi(f_k \otimes g_k) \right) \le \max_k q_m(f_k \odot g_k) = \max_k q_{m_1}(f_k) \cdot q_{m_2}(g_k),$$

which shows that $q_m(\psi(h)) \leq (q_{m_1} \otimes q_{m_2})(h)$. On the other hand, for an arbitrary 0 < t < 1, there exists a representation $h = \sum_{k=1}^N f_k \otimes g_k$ of h such that the set g_1, \ldots, g_N is t-orthogonal with respect to the seminorm q_{m_2} . Let $u = \psi(h)$. For $x \in X$, let

$$u^{x}: Y \to \mathbb{K}, u^{x}(y) = u(x, y) = \sum_{k=1}^{N} f_{k}(x)g_{k}(y).$$

Then

$$\sup_{y \in Y} |u(x,y)| \cdot N_{m,p \otimes q}(x,y) = N_{m_1,p}(x) \cdot \sup_{y \in Y} |u^x(y)| \cdot N_{m_2,q}(y) = N_{m_1,p}(x) \cdot q_{m_2}(u^x)$$

$$\geq t \cdot N_{m_1,p}(x) \cdot \max_{k} |f_k(x)| \cdot q_{m_2}(g_k).$$

Thus

$$q_m(u) \ge t \cdot \max_k [q_{m_1}(f_k) \cdot q_{m_2}(g_k)] \ge t \cdot (q_{m_1} \otimes q_{m_2})(h).$$

Since 0 < t < 1 was arbitrary, we get that $q_m(u) \ge (q_{m_1} \otimes q_{m_2})(h)$ and the claim follows. Thus

$$\psi: L_{m_1} \otimes L_{m_2} \longrightarrow G = \psi(L_{m_1} \otimes L_{m_2})$$

is a topological isomorphism.

Finally, G is dense in L_m . Indeed, for $A \in \mathcal{R}_1$, $B \in \mathcal{R}_2$, we have that $\chi_{A \times B} = \psi(\chi_A \otimes \chi_B)$. Since each member of \mathcal{R} is a finite union of sets of the form $A \times B$, with $A \in \mathcal{R}_1$, $B \in \mathcal{R}_2$, it follows that $S(\mathcal{R}) \subset G$ and hence G is dense in L_m since this is true for $S(\mathcal{R})$. This completes the proof.

4 A Fubini's Theorem

We will first define the integral of a vector-valued function with respect to a vector measure. Let \mathcal{R}_o be a separating algebra of subsets of X, and $\mu \in M(\mathcal{R}_o, F)$. For $A \in \mathcal{R}_o$, let \mathcal{D}_A be the family of all $\alpha = \{A_1, \ldots, A_n; x_1, \ldots, x_n\}$, where $\{A_1, \ldots, A_n\}$ is an \mathcal{R}_o -partition of A and $x_k \in A_k$. For $f \in E^X$ and $\alpha = \{A_1, \ldots, A_n; x_1, \ldots, x_n\}$, we define $\psi_{\alpha}(f, \mu) = \sum_{k=1}^n f(x_k) \otimes \mu(A_k) \in E \otimes F$. If the limit $\lim_{\alpha} \psi_{\alpha}(f, \mu)$ exists in $E \otimes F$, then we will say that f is μ -integrable over A and we will denote this limit by $\int_A f d\mu$. For A = X, we will write simply $\int f d\mu$. It is easy to see that if f is μ -integrable over X, then f is μ -integrable over every $A \in \mathcal{R}_o$ and

$$\int_A f \, d\mu = \int \chi_A f \, d\mu.$$

Using an argument analogous to the one used for scalar measures ([9], Theorem 2.1).

Theorem 4.1 An $f \in E^X$ is μ -integrable with respect to some $\mu \in M(\mathcal{R}_o, F)$ iff, for each $p \in cs(E)$ and each $q \in cs(F)$, there exists an \mathcal{R}_o -partition $\{A_1, \ldots, A_n\}$ of X such that $p(f(x) - f(y)) \cdot m_q(A_k) \leq \epsilon$, for all k, if $x, y \in A_k$. Moreover, in this case we have that

$$p \otimes q \left(\int f \, d\mu - \sum_{k=1}^{n} f(x_k) \otimes \mu(A_k) \right) \leq \epsilon,$$

where we denote also by $p \otimes q$ the unique continuous extension to all of $E \hat{\otimes} F$.

Assume next that $\mu \in M_{\tau}(\mathcal{R}_o, F)$. For $f \in E^X$, $q \in cs(F)$, $p \in cs(E)$, let

$$||f||_{N_{\mu,p,q}} = \sup_{x \in X} p(f(x)) \cdot N_{\mu,q}(x).$$

Let Z_{μ} be the space of all $f \in E^X$ with $||f||_{N_{\mu,p,q}} < \infty$ for all $p \in cs(E)$ and $q \in cs(F)$. Each $||\cdot||_{N_{\mu,p,q}}$ is a seminorm on Z_{μ} . Let $S(\mathcal{R}_o, E)$ be the space of all E-valued \mathcal{R}_o -simple functions. It is easy to see that, for $f = \sum_{k=1}^n \chi_{A_k} s_k$, we have that

$$\int f \, d\mu = \sum_{k=1}^{n} s_k \otimes \mu(A_k) \quad \text{and} \quad p \otimes q \left(\int f \, d\mu \right) \leq \|f\|_{N_{\mu,p,q}}$$

for all $p \in cs(E)$, $q \in cs(F)$. Let

$$\pi: S(\mathcal{R}_o, E) \longrightarrow E \hat{\otimes} F, \quad \pi(f) = \int f \, d\mu.$$

Then π is continuous if we consider on $S(\mathcal{R}_o, E)$ the topology induced by the topology of Z_{μ} . Thus there exists a continuous extension

$$\bar{\pi}: \overline{S(\mathcal{R}_o, E)} \longrightarrow E \hat{\otimes} F.$$

Definition 4.2 A function $f \in E^X$ is said to be (VR)-integrable with respect to some $\mu \in M_{\tau}(\mathcal{R}_o, F)$ if it belongs to $D_{\mu} = \overline{S(\mathcal{R}_o, E)}$. In this case, $\overline{\pi}(f)$ is called the (VR)-integrable of f and will be denoted by $(VR) \int f d\mu$.

Theorem 4.3 If $f \in D_{\mu}$, then for all $p \in cs(E)$, $q \in cs(F)$, we have

$$p \otimes q(\left((VR) \int f d\mu\right) \leq ||f||_{N_{\mu,p,q}}.$$

Proof: There exists a net (g_{δ}) in $S(\mathcal{R}_o, E)$ converging to f. Then

$$(VR)\int f\,d\mu=\lim_{\delta}\int g_{\delta}d\mu,\quad {
m and}\quad \|g_{\delta}\|_{N_{\mu,p,q}} o \|f\|_{N_{\mu,p,q}}.$$

Since

$$p \otimes q \left(\int g_{\delta} d\mu \right) \leq \|g_{\delta}\|_{N_{\mu,p,q}},$$

the Theorem follows.

In view of [11, Theorem 2.8], the closure of the set

$$\bigcup_{q \in cs(F)} \{x : N_{\mu,q}(x) > 0\}$$

is the smallest closed support set for μ .

Theorem 4.4 Let $\mu \in M_{\tau}(\mathcal{R}_o, F)$ and $f \in E^X$. If f is μ -integrable, then f is also (VR)-integrable and

$$\int f \, d\mu = (VR) \int f \, d\mu.$$

Proof: Assume that f is μ -integrable and let \mathcal{D} be the directed set of all $\alpha = \{A_1, \ldots, A_n; x_1, \ldots, x_n\}$, where $\{A_1, \ldots, A_n\}$ is an \mathcal{R}_o -partition of X and $x_k \in A_k$. Let $h_{\alpha} = \sum_{k=1}^n \chi_{A_k} f(x_k)$. Let $p \in cs(E)$, $q \in cs(F)$ and $\epsilon > 0$. In view of Theorem 4.1, there exist an \mathcal{R}_o -partition $\{B_1, \ldots, B_N\}$ of X such that

$$\max_{k} \sup_{x,y \in B_k} p(f(x) - f(y)) \cdot m_q(B_k) \le \epsilon.$$

Let $x_k \in B_k$ and $\alpha_o = \{B_1, \dots, B_N; x_1, \dots, x_N\}$. Then, for

$$\alpha = \{A_1, \dots, A_n; y_1, \dots y_n\} \in \mathcal{D}, \quad \alpha \geq \alpha_0,$$

we have that

$$p \otimes q \left(\int f d\mu - \int h_{\alpha} d\mu \right) \leq \epsilon.$$

It follows that $||f||_{N_{\mu,p,q}} < \infty$ and that

$$\int f \, d\mu = \lim_{\alpha} \int h_{\alpha} \, d\mu = (VR) \int f \, d\mu.$$

Hence the Theorem holds.

Lemma 4.5 Let $m_1 \in M_{\tau}(\mathcal{R}_1, E)$, $m_2 \in M_{\tau}(\mathcal{R}_2, F)$ and $m = m_1 \otimes m_2$. Let also $f \in \mathbb{K}^{X \times Y}$ be (VR)-integrable with respect to m. For $y \in Y$, let $f^y = f(\cdot, y)$. If there exists a $q \in cs(F)$ such that $N_{m_2,q}(y) > 0$, then f^y is (VR)-integrable with respect to m_1 .

Proof: Every $h \in S(\mathcal{R})$ is of the form $h = \sum_{k=1}^{n} \lambda_k \chi_{A_k \times B_k}$, where $\lambda_k \in \mathbb{K}$, $A_k \in \mathcal{R}_1$, $B_k \in \mathcal{R}_2$. It is clear that $h^y \in S(\mathcal{R}_1)$. Suppose that $N_{m_2,q}(y) = d > 0$ and let $\epsilon > 0$. Given $p \in cs(E)$, there exists an $h \in S(\mathcal{R})$ such that $||f - h||_{N_{m,p\otimes q}} \leq d\epsilon$. Now, for $x \in X$, we have

$$|f^{y}(x) - h^{y}(x)| \cdot N_{m_{1},p}(x) = |f(x,y) - h(x,y)| \cdot N_{m,p \otimes q}(x,y)/d \le \epsilon$$

and so $||f^y - h^y||_{N_{m_1,p}} \le \epsilon$. This clearly proves that f^y is (VR)-integrable with respect to m_1 .

Theorem 4.6 (Fubini's Theorem). Let m_1 , m_2 , m be as in the preceding Lemma and let $f \in \mathbb{K}^{X \times Y}$ be (VR)-integrable with respect to m. Let $g: Y \to E$ be defined by $g(y) = (VR) \int f^y dm_1$ if

$$y \in G = \{z \in Y : \exists q \in cs(F) \quad with \quad N_{m_2,q}(y) > 0\}$$

and arbitrarily if $y \notin G$. Then g is (VR)-integrable with respect to m_2 and

$$(VR)\int g\,dm_2=(VR)\int f\,dm.$$

Proof: There exists a net (h_{δ}) in $S(\mathcal{R})$ such that $h_{\delta} \to f$ in L_m and

$$(VR)\int f\,dm=\lim_{\delta}\int h_{\delta}\,dm.$$

Define

$$g_{\delta}: Y \to E, \quad g_{\delta}(y) = \int h_{\delta}^{y} dm_{1}.$$

Then, for $p \in cs(E)$, $q \in cs(F)$ and $y \in Y$, we have

$$p(g_{\delta}(y) - g(y)) \cdot N_{m_2,q}(y) \le ||f - h_{\delta}||_{N_{m,p \otimes q}}.$$

Indeed, if $N_{m_2,q}(y) \neq 0$, then

$$g_{\delta}(y) - g(y) = \int (f^y - h^y_{\delta}) dm_1$$

and so

$$p(g_{\delta}(y) - g(y)) \le ||f^{y} - h_{\delta}^{y}||_{N_{m_{1},p}},$$

which implies that

$$p(g_{\delta}(y) - g(y) \cdot N_{m_{2},q}(y) \leq \sup_{x} |f(x,y) - h_{\delta}(x,y)| \cdot N_{m_{1},p}(x) \cdot N_{m_{2},q}(y)$$

$$\leq ||f - h_{\delta}||_{N_{m,p\otimes q}}.$$

This proves that g is (VR)-integrable with respect to m_2 . Since, for $A \in \mathcal{R}_1$, $B \in \mathcal{R}_2$, $u = \chi_{A \times B}$ and $v(y) = \int u^y dm_1$, we have that

$$\int h_\delta dm = \int g_\delta dm_2,$$

it follows that

$$\int h_{\delta} dm = \int g_{\delta} dm_2,$$

and so

$$(VR)\int f\,dm=\lim\int h_\delta\,dm=\lim\int g_\delta\,dm_2=(VR)\int g\,dm_2,$$

which completes the proof.

References

- [1] J. Aguayo, Vector measures and integral operators, in: Ultrametric Functional Analysis, Cont. Math., vol. 384(2005), 1-13.
- [2] J. Aguayo and T. E. Gilsdorf, Non-Archimedean vector measures and integral operators, in: p-adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, vol 222, Marcel Dekker, New York (2001), 1-11.
- [3] J. Aguayo and M. Nova, Non-Archimedean integral operators on the space of continuous functions, in: Ultrametric Functional analysis, Cont. Math., vol. 319(2002), 1-15.
- [4] G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112.
- [5] A. K. Katsaras, The strict topology in non-Archimedean vector-valued function spaces, Proc. Kon. Ned. Akad. Wet. A 87 (2) (1984), 189-201.
- [6] A. K. Katsaras, Strict topologies in non-Archimedean function spaces, Intern. J. Math. and Math. Sci. 7 (1), (1984), 23-33.
- [7] A. K. Katsaras, Separable measures and strict topologies on spaces of non-Archimedean valued functions, in: P-adic Numbers in Number Theory, Analytic Geometry and Functional Analysis, edided by S. Caenepeel, Bull. Belgian Math., (2002), 117-139.
- [8] A. K. Katsaras, Strict topologies and vector measures on non-Archimedean spaces, Cont. Math. vol. **319** (2003), 109-129.
- [9] A. K. Katsaras, Non-Archimedean integration and strict rtopologies, Cont. Math. vol. 384 (2005), 111-144.
- [10] A. K. Katsaras, P-adic measures and p-adic spaces of continuous functions, University of Ioannina, Technical report, no 15(2005).
- [11] A. K. Katsaras, Vector valued p-adic measures (preprint).
- [12] A. F. Monna and T. A. Springer, Integration non-Archimedienne, Indag. Math. 25, no 4(!963), 634-653.
- [13] J. B. Prolla, Approximation of vector-valued functions, North Holland Publ. Co., Amsterdam, New York, Oxforfd, 1977.
- [14] W. H. Schikhof, Locally convex spaces over non-spherically complete fields I, II, Bull. Soc. Math. Belg., Ser. B, 38 (1986), 187-224.
- [15] A. C. M. van Rooij, Non-Archimedean Functional Analysis, New York and Bassel, Marcel Dekker, 1978.

[16] A. C. M. van Rooij and W. H. Schikhof, Non-Archimedean Integration Theory, Indag. Math., 31(1969), 190-199.

Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece. e-mail : akatsar@uoi.gr.