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Abstract

Tensor products of p-adic vector measures are introduced and some of their
properties are investigated. It is shown that a Fubini’s Theorem holds for tensor
products of 7-additive vector measures.

1 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field, whose
valuation is non-trivial. By a seminorm, on a vector space over K, we will mean
a non-Archimedean seminorm. Similarly, by a locally convex space we will mean
a non-Archimedean locally convex space over K (see [14] or [15]). For E a locally
convex space, we will denote by cs(E) the collection of all continuous seminorms
on E. If F is Hausdorff, £ denotes the completion of E. If F is another locally
convex space, then, for p € cs(E) and ¢ € ¢s(F), p ® g denotes the tensor product
of the seminorms p,g. On the tensor product £ ® F' we will consider the projective
topology, which coincides with the topology generated by the seminorms p ® g,
p € cs(E) and g € c¢s(F). For a zero-dimensional Hausdorff space X, 3,X is the
Banachewski compactification of X (see [4]), C(X, E) is the space of all continuous
E-valued functions on X, while Cy(X, E) and C..(X, E) are the subspaces of all
[ € C(X, E) whose range is bounded or relatively compact in E, respectively. In
case E = K, we write simply C(X), Cy(X) and Cye(X), respectively. For f € KX
and A C X, we define

Iflla = sup{|f()| : z € A} and |If|| =[f]x-

For A C X, A° will be its complement in X and x4 the K-valued characteristic
function of A. Next we will recall the definition of the topologies 8 and 3, on
Cy(X) (see [5] and [6]). Let 2 = Q(X) be the family of all compact subsets of
BoX which are disjoint from X. For Z € Q, let Cz be the set of all h € Cpo(X)
for which the continuous extension h% to all of 8,X vanishes on Z. We denote by
Bz the locally convex topology on Cy(X) generated by the seminorms py, h € Cz,
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pr(f) = ||hf]|.The inductive limit of the topologies 8z, Z € , is the topology 3 (see
[5]). As it is shown in [8], Theorem 2.2, an absolutely convex subset W of C,(X) is
a Bz neighborhood of zero iff, for each 7 > 0, there exist a clopen (i.e. both closed
and open) subset A of X, whose closure in (3,(X) is disjoint from Z, and € > 0 such
that

{feCX) Iflaelfl<rcW.

The strict topology B, (see [5]) is defined by the seminorms f +— ||¢f||, where ¢
ranges over the family By, (X) of all ¢ € KX which are bounded and vanish at
infinity. As it is shown in [11], Theorem 4.18, the topologies 3 and B3, on Cy(X)
coincide.

Assume next that X is a non-empty set and R a separating algebra of subsets of X,
i.e. R is a family of subsets of X such that

1. XeR ,and,if A,B€R,then AUB, AN B, A¢ are also in k.

2. If z,y are distinct elements of X, then there exists a member of R which
contains z but not y.

Then R is a base for a Hausdorff zero-dimensional topology 7 on X. For E a locally
convex space, we denote by M(R,E) the space of all finitely-additive measures
m : R — E such that m(R) is a bounded subset of E (see [11]). For a net (V) of
subsets of X, we write Vs | 0 if (Vs) is decreasing and NV = 0. An element m of
M(R, E) is said to be T-additive if m(Vj) — 0 for each net (V;) in R with V5 | 0.
We will denote by M, (R, E) the space of all 7-additive members of M (R, E). For
m € M(R,E) and p € cs(E), we define

mp: R =R, myp(A4) =sup{p(m(V)):VER,V CA} and [ml, =mp(X).
We also define
Nppr X =R, Npg(o)y=inf{m,(V):2 €V e R}

Next we will recall the definition of the integral of an f € K* with respect to
some m € M(R,E). Assume that E is a complete Hausdorff locally convex space.
For A C X, let D4 be the family of all @ = {41, Aa,..., An;%1,%2,...,%,}, Where
{A1,As,...,Ap} is an R-partition of A and z; € Ay. We make D4 into a directed
set by defining oy > @y if the partition of A in o is a refinement of the one in as.
For a = {A1,Ay,...,An;T1,%2,...,2n}, we define wo(f,m) = Y i, flzr)m(Ax)-
If the limit limwy(f,m) exists in E, we will say that f is m-integrable over A and
denote this limit by [, f dm (see [11]). For A = X, we write simply [ fdm. It is
easy to see that if f is m-integrable over X, then it is m-integrable over every A € R
and fA fdm = [xafdm. If f is bounded on A, then

7 (]Afdm) < 1Flla - mp(A).

Assume next hat m is 7-additive and let S(R) be the space of all K-valued R-simple
functions. Let G,, be the space of all f € KX for which

|| Nmp = sUP |f(Z)] - Nimp(z) < 00
zeX
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for all p € cs(E). We consider on G, the locally convex topology generated by the
seminorms ||.||x,, ,, P € ¢s(E). The map

w:SR)— E, w(g):[gdm

is continuous and so it has a continuous extension @ : S(R) — E. We will say that
[ is (V R)-integrable with respect to m iff f € S(R = L,,. In this case we will
denote @(f) by (VR) [ fdm (see [11]). As it is shown in [11], the space L,,, with
the induced topology, is complete. In the same paper it is proved that, if f € KX is
m-integrable, then it is also (V R)-integrable and

(VR)ffdm=ffdm.

2 Tensor Products of Measures

Let R1, R2 be separating algebras of subsets of the sets X, ¥, respectively, and let
R be the algebra of subsets of X x Y which is generated by the family

R]_XRZZ{AXB?AERLBERQ}.

Lemma 2.1 If R, R1, and Rs are as above, then :
1. A subset G of X xY is in R iff it is a finite union of members of R1 X Rs.

2. Every member of R is a finite union of pairwise disjoint members of Rl X Ra.

Proof : (1). Let @ be the family of all finite unions of members of R; x Ry. It is
clear that ® contains X x Y and that it is closed under finite intersections and finite
unions. Also, since (A x B)¢ = [A° x Y]|J[A x B, it follows easily that & is closed
under complimentation. It is clear now that & = R.

(2). Let G = J;_; Ax x By, where Ay € Ry, By, € R;. We will show by induction
on n that G is a finite union of pairwise disjoint members of R; x Ro. Suppose that
1t is true when n = k and let n = k + 1. By our induction hypothesis, there are
pairwise disjoint members D; x F; of Ry x Ro. ¢ =1,..., N, such that

N k
U&xﬂ:Umx&
=1 =1
Let
®;, ={DixY, D; x F{} for i=1,...,N,

and let F be the family of all subsets of X x Y of the form ﬂf\;l Vi, where V; € ®,.
[
Clearly | F = (Ulf Ayx B,;) and the members of F are pairwise disjoint. Now

k+1 N
UAzXBlzlthXFz
=1 L

This clearly shows that Uif“ A; x B; can be written as a finite union of pairwise
disjoint members of R; X R, and the Lemma follows.

\J{D N (Ak41 x Bey1) : D € F}
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Lemma 2.2 7 =T, X TR,-

Proof : Since 7, = Tr, X Tr, is zero dimensional and R x Ro C 7o, it follows that
Tr C T,. On the other hand, let (z,y) € G € 7,. There are A € R, B € Ry with
(z,y) € Ax B C G. Since A x B € R, it follows that R is a base for 7, and so
To = TR. 3

Lemma 2.3 Let E, F be Hausdorff locally convexr spaces and my; € M(R1,E),
me € M(Ro, F). If {A,Ay,...,An} C Ry and {B,B1,...,Bp} C Ry are such that
the sets Ay X B, k= 1,...,n, are pairwise disjoint and their union is A X B, then

mi(A) ® ma(B) = Eml(Ak) ® ma(Bg).
k=1

Proof : 'We will prove it by induction on n. Suppose that it holds for n = &k and let
n =k + 1. If one of the A; x B is empty, we are done. Assume that none of them
is empty. Then AN A; = 4; and BN B; = B;. Now

k
U A; x B;= (A x B) ﬂ [(Ak+1 X Br41)©]

= (4 x B [(4f1 x V) (k11 x Biyy)] -

Also
(ANAS,) x B=[(ANAE,,) x O{UA xB]
k
= |J (4sn 45,) x B;
=1
and

k
Agt1 % (BN Biyp) = { Ak x (BN B )} m {U Aj % Bi}
=1
k

= LJ(Az NAgy1) X (BiN Bf:-!—l)'

=1
By our induction hypothesis, we have

k
mi (A N Ai-t—l) & ’m.g(B} = ZmﬂAz n Ak+1) ® mg(Ba)
=1

and

k
mi (A1) ® ma(BNBEy ) =Y mi(As N Agyr) ® ma(B; N Biy).
=1
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Moreover, for 1 < k,

m1(A;) ® ma(B;) = my(A; N Agq1) @ ma(B;) +my (A NAS, ) ® ma(B;)
= m1(A; N Ag41) ® ma(B; N Byt1)
+mi(4; N Apy1) @ ma(B; N Bf:+1) +my(4; N AE+1) ® ma(B;).

Since one of the two sets 4; N Agy1, B; N Bry1 must be empty, we have that
ml(z‘l@) X ’!’P’LzBi) =my (Az N Ak+1) @ mg(Bi N Bf‘é"l-l) + ml(A«,, N Ai-&-l) ® mz(B,,,)
Thus

m1(A) ® ma(B) = m1(AN AR, ;) ® ma(B) + ma(Agt1) ® ma(B)
=my (AN Ag) ®ma(B) +mi1(Agy1) ® me(B N Biy,)
+ m1 (A1) ® ma(Bgyr)

= Zm1 ) ® ma(B;) + mi(Agt1) ® ma(Bry1)-

This clearly completes the proof.

Lemma 2.4 Let Ry, Ry, R, mi1, ma be as in the preceding Lemma. If Ay, F; € R1,
Br,GieRo, k=1,...,n,1=1,...,N, are such that U;:':lAk@Bk = £1ﬂ®Gi
and each of the families {Ay x By, : k =1,...,n} and {F; x G; : i = 1,...,N}
consists of sets which are pairwise disjoint, then

Zml Ar) ® ma(Byg) Zml ) ® ma(G5).
k=1

Proof :

N n
Apx By = J(FinAx) x (GinBy) and F; x Gi = | J(F; N Ag) x (G; N By).
=1 k=1

Now the result follows by applying the preceding Lemma.

Theorem 2.5 If Rq, R, R, mi1, ma are as in the preceding Lemma, then there
erists o unique m € M(R,E® F) with m(A x B) = m1(A) ® ma(B), when A € Ry
and B € Ro.

Proof :  For G € R, there are 4; € Ry, B; € Ry, © = 1,...,n, such that

= U=, Ai x B; and the sets A4; x B; are pairwise disjoint. Define m(G) =
> 1 mi1(A; ® ma(B;. In view of the preceding Lemma, m is well defined and finitely
additive. Also m(R) is a bounded subset of £ ® F' and so m € M(R,E ® F).
Clearly m is the unique 4 € M(R,E ® F) such that u(A x B) = m1(4) ® my(B)
when A € R; and B € Rs.

We will call m; ® mso the tensor product of mq, ms.
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Theorem 2.6 Let m; € M(R1,E), ms € M(R2),F), m = m1 @ mg, p € cs(E)
and q € cs(F). Then, for V1 € Ry, Va € Ry, we have

Mpaq(V1 X Va) = (m1)p(V1) - (ma)q(Va).

Moreover, for x € X, y € Y, we have

Nm,P@q(may) = Nm1,p($) 'Nmz,q(y}-

Proof : Let d = (m1)p(V1) - (ma)q(V2). Tt is clear that d < mp®q.(V1 x V3). On the
other hand, let G € R, G C Vi x V5. There are pairwise disjoint 4; x B; in R1 X Ra
such that G = U? A; x By, A; Vi, B; C V5. Then

p®q(m(G)) =p®gq (Z mi(A;) ® mz(Bi))
1

< (m1)p(V1) - (m2)q(Va).

Thus mpgq (V1 X V2) < d and so d = mpgq(V1 x V2). Given € > 0, there exist A € R4
containing z and B € R, containing y such that

(m1)p(A) < Ny p(z) + €, (m2)g(B) < Ny o(y) + €.
Thus
Nm,p@g(may) = mp@q(A X B) = (ml)p(A) ) (m2)q(B)
= Ithp(I) + €] - [Ny ,q(y) + el .

Taking € — 0, we get that

Nm:P@Q(zay) = le,p(a:) ‘Nmz,q{y)-

On the other hand, let N, pgq(z,y) < 8. There exists G € R containing (z,y) such
that mpgqe(G) < 0. By Lemma 2.1, there exist A € R; containing z and B € Rq
containing y such that A x B C G. Now

thp(a") : Nmz,q(y) < (ml)p(A) ’ (m2)q(B) = mp@q(A x B) < mp@q(G) < 0.
It is clear now that

Nm,p@q(may) = le,p(fc) : Nmz,q(y}

and the result follows.

Throughout the rest of the paper, E, F will be complete Hausdorff
locally convex spaces, X, Y non-empty sets, R, R separating algebras
of subsets of X, Y, respectively, and R the algebra of subsets of X x Y
generated by R; x Ra.

For f € KX, g € KY, we will denote by f ® g the function which is defined on
X xY by f@g(z,y) = f(z)g(y).
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Theorem 2.7 Let my € M(Rq,E), mg € M(R3,F) and m = my ®@ms. If f € KX
is my-integrable and g € KY is mg-integrable, then f © g is m-integrable and

frosins [ sn] s

Proof : Let p € cs(E), q € cs(F) and € > 0. By [11, Theorem 4.2], there are
A € Ri, B € Ry such that (m1),(A°) = (m2)q(B°) = 0 and f, g are bounded
on A, B, respectively. Let d > max{||f||4,lg/lz} and choose 0 < ¢; < min{l,¢}
such that de; - max{||m1||p, [[mz|ls} < e. By [11, Theorem 4.1], there exist an R;-
partition {A1,...,An} of X, which is a refinement of {4, A°}, and an Ry-partition
{B1,...,Bn} of Y, which is a refinement of {B,B°}, such that |f(z;) — f(z| -
(ma)p(As) < e, if 21, 2 are in A;, and |g(y1) — g(y2)| - (ma2)y(B;) < €1, if 11, yo are
in B;. Choose x; € A;, y; € Bj. Then , by [11, Theorem 4,1], we have

p (ffdml = Zf(iﬂi)ml (Ai)) <€
i=1

and

i=1

N
q (/gdmz - ZQ{UJ)WE(BJ')) <€

N and

We may assume that Uf:l A; = A and U§=1 Bi=B. Let1<i<n,1<
= uppose

let (z1,22) € A; x B;. If either 4 > k or j > r, then Mpgg(As X Bj)
that ¢ < k and § <r. Then

|F(2)9(y5) — £(21)9(22)| - mpeq(As X B;)

< drmax {|f(zi — £ ()] - (ma)p(A0))(m2)g(V), l9(w5) — 9(22)] - (m2)a(By) - (ma)p(X
< dey - max{|mi |, ll(mallg} = ez < e

This, in view of [11, Theorem 4.1], implies that, if we consider m as a member of
M(R,E®F), then h = f ® g is m-integrable and

J<
0. S

P®gq (ffdm— Zf(wi)g(yj)ml(Ai)mz(Bj)) < €.

1,5
Let
k r
w= [ fdm=Y femdd), w= [ gdma =3 gfusyma(B;
=1 j=1
and
k r
g / hdm =35 f(z)g(y;) - ma(Asyma(B;).
i=1 j=1
Then

—[hdm+ ([ fdm1) ® ([ gdms) =

o7

)}
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=—u+u@us+u ® (Z§:1 Q(Uj)MQ(Bj)) i [Zf:l f(mz)m1(-41)} ® tz.
But p® g(u1 ® us) < f < e and p® g(u) < e Also

P®q (ul ® (Z g(yj)mz(Bj))) <ead-[mefg<e

=i

o
roe( [ ram]o [fon] =

Since € > 0 was arbitrary and E, F are Hausdorff, it follows that

/hdmz (/fdnn) ® ([gdmz)

which completes the proof.

and

k
Zf(mi)ml(fh)] ®U2) <e.

=1

Thus

3 The Case of 7-Additive Measures
Theorem 3.1 If m; € M.(Ry,E) and ma € M, (Rq, F), then
m=m; ®my € M,(R,EQF).

Proof : Consider on X, Y the zero-dimensional topologies 7x,, Tr,, respectively
and on X x Y the product topology which coincides with 7. By [10, Theorem 10.4],
there exists a linear homeomorphism

w: (Cp(X),Bo) ® (Cop(Y), Bo) — (Co(X x Y, 55)

onto a dense subspace M of Cy(X x Y), where w(f ® g) = f © g, for f € Cp(X),
g € Cp(Y). The map f — [ fdmy, from Cp(X) to E, is fSo-continuous by [11,
Theorem 4.13]. The same is true for the map g — [ gdma, from Cy(Y) to F.Given
p € cs(E) and g € cs(F'), there are ¢; € Bou(X), ¢2 € Byy(Y) such that

p([1am) <tonfl, a( [ gdma) <ol
for all f € Cp(X), g € Cp(Y). The bilinear map

T: (Co(X), Bo) X (Co(¥), o) = BF, T(f,q) = ( / fdml) ® ( [ aams)
is continuous and so the induced linear map

¥ : G = (Co(X),80) ® (Cy(Y), Bo) — EQF
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18 continuous. Let _
v=1owt: M — EQF.

Since M is [(B,-dense in Cy(X x Y), there exists a continuous linear extension
T: (Cp(X xY),[3,) — EQF.

In view of [11, Theorem 4.13], there exists a unique u € M, (R, EQF) such that
O(h) = [hdp for all h € Co(X xY). For A € R1, B € Ry, taking as h the
characteristic function of A x B, we get that

p(A x B) = (fXAdm1>_® ([XB dmz) = m1(4)mz(B).

Thus 4(R) C E® F) and u = m by Theorem 2.5.

For R, a separating algebra of subsets of a set Z , G a complete Hausdorff locally
convex space and u € M (R,, G), we denote by L, the space of all f € KZ which are
(VR)-integrable with respect to u. On L, we consider the locally convex topology
generated by the seminorms N, ,, p € cs(G).

Theorem 3.2 Let m; € M;(R1, E), ma € M;(Ra, F) and m = m; ®ms. Then the
projective tensor product Ly, ® Ly, is topologically isomorphic to a dense subspace
of L.

Proof : Consider the bilinear map
T ¢ Ly 0L, ==Ly T g1 = F @4

Let p € cs(E), g€ cs(F), f € Lym,, g € Lm, and h = f ® g. Applying Theorem 2.6,
we get that

12l Nem p0q = 1| Ny 5 - 1G] Ny

and so T is continuous. Consequently the induced linear mat
¥ :Lgp, ® Ly, — Ly

is continuous. The map 1) is one-to-one. In fact, assume that >y, fr © g = 0,
where fr € L, gk € Lm,. We will show, by induction on n, that Y 7_, fr®gx = 0.
This is clearly true if n = 1 or if each fy is zero. Suppose that it is true for
n — 1 and that, say, f, # 0. Then g, s a linear combination of ¢7,...,g9,_1, 1.e.
gn = k1 Akegrs Mk € K. Thus

n—1 n—1

n n—1
0=>"frOgk=) rOg+Y Mlfn@g) =D (fx + \efn) © g
k=1 k=1 k=1 k=1

By our induction hypothesis, we have

n—1 n—1

n—1 n
0=> (fr+Mf)®g =) fi®g+fn® (Z)ucgk) =>_ /% ® g,
k=1 k=1

k=1 k=1

59
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which shows that 1) is one-to-one.
Claim For gm = || * |V peqr m1 = | - N, 55 Gma = ||+ | Nimy 4> We have

gm(¥(h)) = (gm; ® gm,) (h).
Indeed, if h = 22:1 T ® gk, then

n

tm ($(h)) = gm (Z »(fr ® gﬂ) < max gm(fk © gr) = X oy (k) - Gma (98);
k=1

which shows that gm(¥(h)) < (gm; ® gm,)(R). On the other hand, for an arbitrary

0 <t < 1, there exists a representation A = Z;’Ll fr ® gr of h such that the set

91,...,9nN is t-orthogonal with respect to the seminorm g,,. Let u = (h). For

z € X, let

2

u Y K ut(y) =u(z,y) = Y fil@)g(y).
k=1
Then

sup [u(z,y)| - Nmpeq(®,¥) = Nmy,p(2) - sup [u*(Y)] - Nmg,q(y) = N, p(2) - gy (v)
yey yeY !

2 b+ Ny p(2) - max | fi(2)] - Gma ) (9)-

Thus
gm(u) >t- max [Gma (F&) = @ma (k)] 2= T+ (Gmy @ gm,)(R)-

Since 0 < t < 1 was arbitrary, we get that ¢n(u) > (gm, ® gm,)(h) and the claim
follows. Thus

Y: Ly @ Ly, — G =¢(Lp, ® Ly,)
is a topological isomorphism.
Finally, G is dense in Ly,. Indeed, for A € R1, B € Rs, we have that xyaxp =
(x4 ® xp). Since each member of R is a finite union of sets of the form A x B,
with A € Ry, B € Ry, it follows that S(R) C G and hence G is dense in L., since
this is true for S(R). This completes the proof.

4 A Fubini’s Theorem

We will first define the integral of a vector-valued function with respect to a vector
measure. Let R, be a separating algebra of subsets of X, and u € M(R,, F). For
A € R,, let Dy be the family ofalla = {A;, ..., An; Z1,...,Zn}, where {A4;,..., An}
is an Ro-partition of A and zy € Ay. For f € EX and @ = {A1,...,An; 21, .., %0},
we define ¢ (f, u) = Y p—q f(zk) ® u(Ax) € E® F. If the limit lim, 9o (f, p) exists
in EQF, then we will say that f is u-integrable over A4 and we will denote this limit
by fA fdup. For A = X, we will write simply [ fdu. It is easy to see that if f is
p-integrable over X, then f is u-integrable over every A € R, and

Lfdﬂ=/XAfdM-

Using an argument analogous to the one used for scalar measures ([9], Theorem 2.1).
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Theorem 4.1 An f € EX is p-integrable with respect to some u e M(R,, F) iff,
for each p € cs(E) and each q € cs(F), there ezists an Ro-partition {A, ..., An} of
X such that p(f(z) — f(y)) - mq(Ak) < ¢, for all k, if ,y € Ax. Moreover, in this
case we have that

P®Qq (/fd,u—Zf(fﬂk) ®#(Ak)) £¢
k=1

where we denote also by p ® q the unique continuous extension to all of EQF.

Assume next that u € M- (R,, F). For f € EX, g € cs(F), p € cs(E), let

L 1N pg = sUPDP(f(Z)) - Ny g().
zeX

Let Z, be the space of all f € EX with Iflln,,, < oo for all p € cs(E) and

q € ¢s(F). Each || - ||ln,,, s a seminorm on Z,. Let S(R,, E) be the space of all
E-valued R,-simple functions. It is easy to see that, for f = > h_1 XA, Sk, We have
that

[ e ='kz:sk®#mk) and p@q( / far,u)snfm,p,q

for all p € cs(E), g € cs(F). Let
7 : S(Ro, E) — EQF, 7(f) =ffdp.

Then 7 is continuous if we consider on S(R,, E) the topology induced by the topol-
ogy of Z,. Thus there exists a continuous extension

7:5(R,, E) — ERF.
Definition 4.2 A function f € EX is said to be (VR )-integrable with respect to

some p € Mr(Ro, F) if it belongs to D, = S(R,, E). In this case, 7(f) is called the
(VR)-integrable of f and will be denoted by (VR) [ f du.

Theorem 4.3 If f € D, then for all p € cs(E), q € cs(F), we have

P® q(((VR)/fdﬂ) S Nl Ve

Proof : There exists a net (gs5) in S(R,, F) converging to f. Then

(VR)[fd,u = li(xinfggd,u, and |lgslln,,, — Il .-

PRq (f gs d#) < 19511 ¥y g

Since

the Theorem follows.
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In view of [11, Theorem 2.8|, the closure of the set

U {z:Nug(z) >0}

g€cs(F)

is the smallest closed support set for u.

Theorem 4.4 Let u € M;(R,, F) and f € EX. If f is u-integrable, then f is also

(VR)-integrable and
/fd;u= (VR)]fdM-

Proof : Assume that f is u-integrable and let D be the directed set of all o =
{A1...,An;z1,...,20}, where {A1,..., A} is an Ro-partition of X and zx € Ag.
Let ho = ) g1 X4, f(zk). Let p € ¢s(E), g € ¢s(F) and € > 0. In view of Theorem
4.1, there exist an R,-partition {Bj,...,Bn} of X such that

max sup p(f(z) — f(y)) -mqe(Bk) e
z,y€EBy

Let z; € By and & = {B1,-- s BNi Zi;+- 52N} Then , for

8 = {Aiss o AnililsooeYaF €Dy G20y

p®q(/fdn¥/hadu) L&

It follows that ||f||w,,, < co and that

/fdp=1i§1/hadu=(VR)ffdp.

Hence the Theorem holds.

we have that

Lemma 4.5 Let my € M,(R1, E), mas € M,(Rq, F) and m = m; ® ma. Let also
f € KX*Y be (VR)-integrable with respect to m. For y € Y, let f¥ = f(-,y). If
there ezists a g € cs(F) such that Npy,q(y) > 0, then f¥ is (VR)-integrable with
respect to ma.

Proof : Every h € S(R) is of the form h = Y p_; AkXA,xB,, Where Ay € K,
Ag € R1, B € Ry. It is clear that hY € S(R1). Suppose that Ny, 4(y) = d > 0 and
let € > 0. Given p € cs(E), there exists an h € S(R) such that ||f — hl|n,, ,e, < de.
Now, for z € X, we have

|£¥(z) — h¥(2)] - Ny p(z) = £ (2,9) — B2, Y)| - Nmpoq(2,y)/d < €

and so ||fY — h¥||N,,, , < e This clearly proves that fY is (VR)-integrable with
respect to my.
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Theorem 4.6 (Fubini’s Theorem). Let mi, ma, m be as in the preceding Lemma
and let f € KXXY be (VR)-integrable with respect to m. Let g : Y — E be defined
by g(y) = (VR) [ f¥dmy if

yEG={2€Y:3g€cs(F) with Np,q(y) >0}

and arbitrarily if y ¢ G. Then g is (VR)-integrable with respect to my and

VR [gdm=(VR) [ jam

Proof : There exists a net (hy) in S(R) such that ks — f in L,, and

(VR)ffdmzlign/hgdm.

Define
Y= E, gy = [h’:é dmy.

Then, for p € cs(E), g € cs(F) and y € Y, we have

P(95(y) — 9(¥)) - Nmaq(v) < IIf = hollv peq-

Indeed, if Ny, 4(y) # 0, then

0 (0) = gly)= [ (fY — W) dimy

and so
p(g5(y) —9(®) < IFY — B3l Npm, s
which implies that

p(95(y) — 9(y) - Nimy 4(y) < sup |f(z,y) — hs(z, )| - Ny p(2) - Nimy o (¥)
o [ G 71| - M-

This proves that g is (VR)-integrable with respect to ms. Since, for A € R, B € R,
u = xaxp and v(y) = [u¥ dmy,, we have that

/hadmtfgadmzs
[hgdm=fg(5d'm2,

(VR)ffdmzlim/hgdmmlimfggdmg: (VR)fgdmg,

it follows that

and so

which completes the proof.
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